纺织学报 ›› 2021, Vol. 42 ›› Issue (12): 188-195.doi: 10. 13475/j.fzxb.20201201008
李庆1(), 陈灵辉1, 李丹1, 吴志强1, 朱炜1, 樊增禄2
LI Qing1(), CHEN Linghui1, LI Dan1, WU Zhiqiang1, ZHU Wei1, FAN Zenglu2
摘要:
为促进金属-有机骨架(MOFs)在印染废水处理中的应用,对MOFs光催化降解染料的研究进展进行综述。阐述了MOFs的制备方法和空间结构的高可设计性,分析了提升MOFs可见光催化降解能力的策略:采用发色团修饰的有机配体来构筑高可见光响应性的MOFs;选取高可见光敏感的客体分子,通过物理吸附进入MOFs内部空腔或附着于其表面进行后修饰,构建出具有高可见光催化降解效能的MOFs复合材料。论述了提升MOFs循环使用能力即实用性的思路和方法,并分析了MOFs的光催化降解效果和染料降解产物。最后指出:开展基于高水稳定性MOFs的光敏后修饰研究,探索该材料与其他传统材料和技术结合,是推进MOFs在印染废水处理领域应用的努力方向。
中图分类号:
[1] |
KHASEVANI S G, GHOLAMI M R. Synjournal of BiOI/ZnFe2O4-metal-organic framework and g-C3N4 based nanocomposites for applications in photocatalysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(23):9806-9818.
doi: 10.1021/acs.iecr.8b05871 |
[2] |
ROJAS S, HORCAJADA P. Metal-organic frameworks for the removal of emerging organic contaminants in water[J]. Chemical Reviews, 2020, 120(16):8378-8415.
doi: 10.1021/acs.chemrev.9b00797 |
[3] | 李庆, 张莹, 樊增禄, 等. Cu-有机骨架对染料废水的吸附和可见光降解[J]. 纺织学报, 2018, 39(2):112-118. |
LI Qing, ZHANG Ying, FAN Zenglu, et al. Adsorption and visible-light photodegradation of dye wastewater over Cu-organic framework[J]. Journal of Textile Research, 2018, 39(2):112-118. | |
[4] |
LI Q, FAN Z L, XUE D X, et al. Multi-dyes@MOF composite boosts highly efficient photodegradation of ultra-stubborn dye of reactive blue 21 under visible-light irradiation[J]. Journal of Materials Chemistry A, 2018, 6(5):2148-2156.
doi: 10.1039/C7TA10184H |
[5] |
LV S W, LIU J M, WANG Z H, et al. Recent advances on porous organic frameworks for the adsorptive removal of hazardous materials[J]. Journal of Environmental Sciences, 2019, 80(6):169-185.
doi: 10.1016/j.jes.2018.12.010 |
[6] | 李庆, 樊增禄, 张洛红, 等. 锆-有机骨架对水中染料的高选择性可循环吸附[J]. 纺织学报, 2019, 40(2):141-146. |
LI Qing, FAN Zenglu, ZHANG Luohong, et al. Preferential and recyclable adsorption of dyes from water by Zr-organic skeleton[J]. Journal of Textile Research, 2019, 40(2):141-146. | |
[7] |
LI Q, CAI X B, CHEN L H, et al, Hydrolytically stable and trifunctional zirconium-based organic frameworks toward Cr2O2-7 detection, capture, and photoreduction[J]. Inorganic Chemistry, 2021, 60(5):8143-8153.
doi: 10.1021/acs.inorgchem.1c00794 |
[8] | 朱炜, 李庆, 张萍, 等. MOF-177吸附CO2、CH4的模拟研究[J]. 纺织高校基础科学学报, 2018, 31(1):90-96. |
ZHU Wei, LI Qing, ZHANG Ping, et al. Simulation study of the adsorption of CO2, CH4 by MOF-177[J]. Basic Sciences Journal of Textile Universities, 2018, 31(1):90-96. | |
[9] |
DHAKSHINAMOORTHY A, LI Z H, GARCIA H. Catalysis and photocatalysis by metal organic frame-works[J]. Chemical Society Reviews, 2018, 47(22):8134-8172.
doi: 10.1039/C8CS00256H |
[10] |
YANG Q L, XU Q, JIANG H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15):4774-4808.
doi: 10.1039/C6CS00724D |
[11] |
SUNDINA E, ABRAHAMSSON M. Long-lived charge separation in dye-semiconductor assemblies: a pathway to multi-electron transfer reactions[J]. Chemical Communications, 2018, 54(42):5289-5298.
doi: 10.1039/C8CC01071D |
[12] |
FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
doi: 10.1126/science.1230444 |
[13] |
ALMEIDA F A, KILNOWSKI J. Hydrothermal synjournal and structural characterization of a novel cadmium-organic framework[J]. Journal of Solid State Chemistry, 2004, 177(10):3423-3432.
doi: 10.1016/j.jssc.2004.05.022 |
[14] |
JHUNG S H, LEE J H, FORSTER P M, et al. Microwave synjournal of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization[J]. Chemistry-A European Journal, 2006, 12(30):7899-7905.
doi: 10.1002/(ISSN)1521-3765 |
[15] |
LI Q, WU T, LAI J C, et al. Diversity of coordination modes, structures, and properties of chiral metal-organic coordination complexes of the drug voriconazole[J]. European Journal of Inorganic Chemistry, 2015(31):5281-5290.
doi: 10.1002/ejic.v2015.31 |
[16] |
FURUKAWA S, REBOUL J, DIRING S, et al. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale[J]. Chemical Society Reviews, 2014, 43(16):5700-5734.
doi: 10.1039/C4CS00106K |
[17] |
LI M, LI D, O'KEEFFE M, et al. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle[J]. Chemical Reviews, 2014, 114(2):1343-1370.
doi: 10.1021/cr400392k |
[18] | 管斌斌, 李庆, 陈灵辉, 等. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(2):122-128. |
GUAN Binbin, LI Qing, CHEN Linghui, et al. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework[J]. Journal of Textile Research, 2021, 42(2):122-128. | |
[19] |
ZHANG T, LIN W B. Metal-organic frameworks for artificial photosynjournal and photocatalysis[J]. Chemical Society Reviews, 2014, 43(16):5982-5993.
doi: 10.1039/C4CS00103F |
[20] |
ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic frame-work (MOF)[J]. Chemistry-A European Journal, 2007, 13(18):5106-5112.
doi: 10.1002/(ISSN)1521-3765 |
[21] |
CANIVET J, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43(16):5594-5617.
doi: 10.1039/C4CS00078A |
[22] |
WANG Q, GAO Q Y, AL-ENIZI A M, et al. Recent advances in MOF-based photocatalysis: environmental remediation under visible light[J]. Inorganic Chemistry Frontiers, 2020, 7(2):300-339.
doi: 10.1039/C9QI01120J |
[23] |
CHAMBERS M, WANG X, ELLEZAM L, et al. Maximizing the photocatalytic activity of metal-organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2[J]. Journal of the American Chemical Society, 2017, 139(24):8222-8228.
doi: 10.1021/jacs.7b02186 |
[24] |
MU X X, JIANG J F, CHAO F F, et al. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation[J]. Dalton Transactions, 2018, 47(6):1895-1902.
doi: 10.1039/C7DT04477A |
[25] | 尚启超, 房新佐, 江海龙, 等. 半导体纳米颗粒/金属-有机骨架复合光催化体系中的位置效应[J]. 化学物理学报, 2018, 31(5):613-618. |
SHANG Qichao, FANG Xinzuo, JIANG Hailong, et al. Location effect in a photocatalytic hybrid system of metal-organic framework interfaced with semiconductor nanoparticles[J]. Chinese Journal of Chemical Physics, 2018, 31(5):613-618. | |
[26] |
DHAKSHINAMOORTHY A, ASIRI A M, GARCÍA H. Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production[J]. Angewandte Chemie International Edition, 2016, 55(18):5414-5445.
doi: 10.1002/anie.v55.18 |
[27] |
QIU J, ZHANG X, FENG Y, et al. Modified metal-organic frameworks as photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 231(5):317-342.
doi: 10.1016/j.apcatb.2018.03.039 |
[28] |
ZHANG X D, YANG Y, HUANG W Y, et al. g-C3N4/UiO-66 nanohybrids with enhanced photocatalytic activities for the oxidation of dye under visible light irradiation[J]. Materials Research Bulletin, 2018, 99(3):349-358.
doi: 10.1016/j.materresbull.2017.11.028 |
[29] | YUAN Y P, YIN L S, CAO S W, et al. Improving photocatalytic hydrogen production of metal-organic framework UiO-66 octahedrons by dye-sensitization[J]. Applied Catalysis B: Environmental, 2015, 168-169(6):572-576. |
[30] | 李庆, 管斌斌, 王雅, 等. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10):87-93. |
LI Qing, GUAN Binbin, WANG Ya, et al. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of reactive dark blue K-R[J]. Journal of Textile Research, 2020, 41(10):87-93. | |
[31] |
GIBSON E A. Dye-sensitized photocathodes for H2 evolution[J]. Chemical Society Reviews, 2017, 46(20):6194-6209.
doi: 10.1039/C7CS00322F |
[32] |
WANG C, LIU X, DEMIR N, et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18):5107-5134.
doi: 10.1039/C6CS00362A |
[33] |
BURTCH N, JASUJA H, WALTON K. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20):10575-10612.
doi: 10.1021/cr5002589 |
[34] |
WANG B, LV X L, FENG D W, et al. Highly Stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19):6204-6216.
doi: 10.1021/jacs.6b01663 |
[35] |
LI Q, FAN Z L, ZHANG L H, et al. Boosting and tuning the visible photocatalytic degradation performances towards reactive blue 21 via dyes@MOF composites[J]. Journal of Solid State Chemistry, 2019, 269(1):465-475.
doi: 10.1016/j.jssc.2018.10.025 |
[36] |
PEARSON R G. Hard and soft acids and bases[J]. Journal of the American Chemical Society, 1963, 85(22):3533-3539.
doi: 10.1021/ja00905a001 |
[37] |
HOWARTH A J, LIU Y, LI P, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1(3):15018.
doi: 10.1038/natrevmats.2015.18 |
[38] |
BAI Y, DOU Y, XIE L, et al. Zr-based metal-organic frameworks: design, synjournal, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8):2327-2367.
doi: 10.1039/C5CS00837A |
[39] | 李庆. 水稳定型In/Zr-有机骨架材料的设计、合成与光催化降解有机染料[D]. 西安: 陕西师范大学, 2017: 105-143. |
LI Qing. Design, synthesis and photocatalytic degradation of organic dues by water stable In/Zr-organic frameworks materials[D]. Xi'an: Shaanxi Normal University, 2017: 105-143. | |
[40] |
FAN G D, LUO J, GUO L, et al. Doping Ag/AgCl in zeolitic imidazolate framework-8 (ZIF-8) to enhance the performance of photodegradation of methylene blue[J]. Chemosphere, 2018, 209(19):44-52.
doi: 10.1016/j.chemosphere.2018.06.036 |
[41] |
HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J]. Chinese Journal of Catalysis, 2017, 38(8):1360-1372.
doi: 10.1016/S1872-2067(17)62875-4 |
[42] |
ARAYAABC T, CHEN C C, JIA M K, et al. Selective degradation of organic dyes by a resin modified Fe-based metal-organic framework under visible light irradia-tion[J]. Optical Materials, 2017, 64(2):512-523.
doi: 10.1016/j.optmat.2016.11.047 |
[43] |
LV H L, ZHAO H Y, CAO T C, et al. Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework[J]. Journal of Molecular Catalysis A: Chemical, 2015, 400(5):81-89.
doi: 10.1016/j.molcata.2015.02.007 |
[1] | 裴刘军, 施文华, 张红娟, 刘今强, 王际平. 非水介质活性染料染色关键技术体系及其产业化研究进展[J]. 纺织学报, 2022, 43(01): 122-130. |
[2] | 韩之欣, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(01): 153-160. |
[3] | 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152. |
[4] | 王博文, 林森明, 岳晓丽, 钟毅, 陈慧敏. 织物喷雾上浆雾化质量评价[J]. 纺织学报, 2021, 42(12): 90-96. |
[5] | 朱维维, 管丽媛, 龙家杰, 施楣梧. 超临界CO2流体处理时间对二醋酯纤维结构与性能的影响[J]. 纺织学报, 2021, 42(12): 97-102. |
[6] | 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
[7] | 鲜永芳, 王红梅, 吴明华, 王莉莉. 少/无氨氮助剂在活性染料深色印花中的应用[J]. 纺织学报, 2021, 42(11): 89-96. |
[8] | 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7. |
[9] | 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
[10] | 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40. |
[11] | 杨卓, 王炜. 还原染料在石墨毡电极上的直接电化学还原[J]. 纺织学报, 2021, 42(09): 104-111. |
[12] | 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52-58. |
[13] | 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121. |
[14] | 张雨晗, 申国栋, 樊威, 孙润军. 芳纶固载BiOBr复合材料的制备及其光催化降解染色废水[J]. 纺织学报, 2021, 42(08): 128-134. |
[15] | 田苗, 雷烨, 王云仪, 李俊, 张向辉. 老年行动模拟服在步态稳定性研究中的应用[J]. 纺织学报, 2021, 42(08): 144-148. |
|